NDN in Collaborative Big Data Applications

Christos Papadopoulos
Colorado State University
AsiaFI 2013
Hong Kong, Aug 11, 2013
Big Data Applications Requirements

• Very large datasets (TB – PB)
 – Simulations, measurements
 – Hard to keep track of different versions
 – Hard to move around (FEDEX rather than Internet)

• Locating Metadata
 – Extensive dataset descriptions
 – Notes, emails, etc.
 – Hard to locate
Current Network Solutions

- GridFTP for bulk transfer
- Various formats (e.g., netCDF) along with tool libraries
- Directory services/cataloging
- Various repositories with different rules, access controls
 - Need separate accounts for each repository
- Other complex solutions
Can NDN Help?

- **Question**: Can we use NDN to address many of these problems?
- **Approach**: Build a campus infrastructure (actually 3 campuses) and introduce NDN into the workflow of an existing big data application
- **Application**: Climate modeling by the CMMAP group at Colorado State
The Power of Naming

• Naming can fetch the data transparently regardless of location
 – Requests can go to appropriate place
• Naming can result in generation of new data
 – I can ask for data that does not yet exist!
 – ..as long as I know how to construct the name
Naming Example

• A project at CMMAP at CSU uses precipitation data from year 1902
• Create a global project name:
 – Colostate.edu/CMMAP/PrecipitationProj1
• Researchers agree on this global project name, which is added to the routing system
• Data under this project can be referred to as:
 – Colostate.edu/CMMAP/PrecipitationProj1/data/pr_1902/01
Naming Example (cont.)

• Suppose researchers add annotations to the data:
 – Colostate.edu/CMMAP/PrecipitationProj1/annotations/pr_1902/01/

• Or emails related to the project:
 – Colostate.edu/CMMAP/PrecipitationProj1/email/pr_1902/01/

• These are just simple examples – namespace design is a big issue in NDN
Experiment Topology
Experiment Setup

- Two servers and two clients
- Servers at CSU, clients at Memphis and St. Louis
- Nodes exchange routes using OSPFN
Announcements

- Servers have `.nc` files, each `.nc` file have one month’s data
- Route announcements in network are based on filename
- Each server advertises one prefix for a file
 - Server having file `pr_19020101.nc` announces `../../pr_1902/01/`
- OSPFN propagates announcement
Dynamic Data Generation

- Servers parse interest names and find the date range
- Pass date range to \textit{ncks} tool.
- \textit{ncks} tool extracts data, writes to file and returns the filename to server
- Server sends back file
An Example Data Request

- Want data for Jan 30 – Feb 02
- Client expresses interests, one for each day
- Interests for Jan 30-31 go to server1
- Interests for Feb 01-02 go to server2
- Data is dynamically generated and sent back
- Client consolidates reply and writes to disk
Repeat Requests and Cache

- If asked for same data, requests are answered from cache
- Saves transmission time, extraction time and transfer time
Partially Cached Data

- What happens if we ask for Jan 29 – Feb 2?
- Request for data not cached goes to server
- Rest is answered from cache
Collaborations

- A asked for data for Jan 30 - Feb 2.
- B later asks for same data.
- B receives data from cache.
Multipath Interest Forwarding

- Interests may be forwarded opportunistically to many destinations
 - Strategy Layer
- Data may be concurrently retrieved from multiple places
 - Bit torrent-style retrieval
NDN vs. Directory Services

• Why not just use IP, CDNs and directory services?

• You can, but..
 – Which directory service? Which directory to use? Which access protocol?
 – Where to place CDN caches?
 – How do you do backups?

• A very complex and hard to use solution
NDN vs. IP Data Retrieval

• Steps in IP
 – Locate the appropriate files (lookup in a catalog)
 – Convert requested data from human readable form into an index into the file
 – Extract the appropriate range from each file at each server
 – Fetch each extracted piece locally
 – Merge each piece into the requested dataset

• Steps in NDN
 – Ask for the requested object by name
Quality of Service

• NDN simplifies QoS implementation
• Symmetry between Interest/Data packets means reservations are easy to make
 – Many ideas in RSVP become easy to implement
• Approach:
 – Send Interest with name and reservation spec
 – Routers make temporary reservations
 – First Data packet confirms path reservations
 – Constant Interest/Data exchange allows for dynamic reservation updates
Delivery Estimation

• It is often desirable for researchers to know how long it would take to retrieve an object
 – The object is very big (simulation run)
 – The object has not been generated yet (e.g., a subset, a simulation that has not finished, etc.)

• Once researchers have delivery estimate, they can decide whether to request the object
Implementing Delivery Estimation

• Combined with QoS, NDN allows the network to answer questions such as:
 – How will it take to retrieve object N?

• Approach:
 – Send Interest asking for availability of object N not retrieval)
 – Interests also carry an estimate of available bandwidth on return path
 – Network responds with cached (portions of) object N
 – Endpoints respond with either availability or time to generate object N

• Possible because NDN uses names – it would be too complex otherwise
Integrating with Existing Workflows

- Challenge: how to integrate NDN with current researcher workflow?
- Cannot be (too) disruptive to the current workflow
- Researchers are used to working with files
- Can we build a veneer over NDN?
Step 1: Integrate with the Filesystem

• Create an NDN-aware filesystem
 – Build using a user-space filesystem
• Add new, relevant File attributes
 – Shared, versioned, backed up, synchronized, etc.
Step 2: Build Translators

• Problem: Going from any file name to NDN-appropriate name

• One solution: Translators
 – Handle various home-grown namespaces, often specific to researcher or research group to NDN names
 – Migrating to potentially richer semantics
 – Eases transition to NDN – just run the translator on your existing files
 – Adds structure to what is currently ad-hoc naming practices – but will it gain acceptance?
Conclusions

• We believe that NDN is a good fit for many applications
• We are currently trying one application domain – big data
 – Huge datasets – network intensive
 – Collaborative applications
 – Established, though largely ad-hoc workflows
 – Needs powerful search/location services
 – Relatively low number of users (compared to Internet)
 – Open to new solutions